2025-08-05 15:41:20 +08:00
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
import re
|
2025-08-06 22:11:33 +08:00
|
|
|
|
import cv2
|
|
|
|
|
|
import numpy as np
|
2025-08-05 15:41:20 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 工具类
|
|
|
|
|
|
class AiUtils(object):
|
|
|
|
|
|
|
2025-08-06 22:11:33 +08:00
|
|
|
|
# 在屏幕中找到对应的图片
|
|
|
|
|
|
@classmethod
|
|
|
|
|
|
def findImageInScreen(cls, target):
|
|
|
|
|
|
# 加载原始图像和模板图像
|
|
|
|
|
|
image_path = AiUtils.imagePathWithName("bgv") # 替换为你的图像路径
|
|
|
|
|
|
template_path = AiUtils.imagePathWithName(target) # 替换为你的模板路径
|
|
|
|
|
|
|
|
|
|
|
|
# 读取图像和模板,确保它们都是单通道灰度图
|
|
|
|
|
|
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
|
|
|
|
|
template = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)
|
|
|
|
|
|
|
|
|
|
|
|
if image is None:
|
|
|
|
|
|
raise ValueError("背景图无法加载")
|
|
|
|
|
|
|
|
|
|
|
|
if template is None:
|
|
|
|
|
|
raise ValueError("模板图无法加载")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获取模板的宽度和高度
|
|
|
|
|
|
w, h = template.shape[::-1]
|
|
|
|
|
|
|
|
|
|
|
|
# 使用模板匹配方法
|
|
|
|
|
|
res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
|
|
|
|
|
|
threshold = 0.7 # 匹配度阈值,可以根据需要调整
|
|
|
|
|
|
loc = np.where(res >= threshold)
|
|
|
|
|
|
|
|
|
|
|
|
# 检查是否有匹配结果
|
|
|
|
|
|
if loc[0].size > 0:
|
|
|
|
|
|
# 取第一个匹配位置
|
|
|
|
|
|
pt = zip(*loc[::-1]).__next__() # 获取第一个匹配点的坐标
|
|
|
|
|
|
center_x = int(pt[0] + w // 2)
|
|
|
|
|
|
center_y = int(pt[1] + h // 2)
|
|
|
|
|
|
# print(f"第一个匹配到的小心心中心坐标: ({center_x}, {center_y})")
|
|
|
|
|
|
return center_x, center_y
|
|
|
|
|
|
else:
|
|
|
|
|
|
print("未找到匹配的目标")
|
|
|
|
|
|
return -1, -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 使用正则查找字符串中的数字
|
2025-08-05 15:41:20 +08:00
|
|
|
|
@classmethod
|
|
|
|
|
|
def findNumber(cls, str):
|
|
|
|
|
|
# 使用正则表达式匹配数字
|
|
|
|
|
|
match = re.search(r'\d+', str)
|
|
|
|
|
|
if match:
|
|
|
|
|
|
return int(match.group()) # 将匹配到的数字转换为整数
|
|
|
|
|
|
return None # 如果没有找到数字,返回 None
|
|
|
|
|
|
|
|
|
|
|
|
|
2025-08-06 22:11:33 +08:00
|
|
|
|
# 选择截图
|
2025-08-05 15:41:20 +08:00
|
|
|
|
@classmethod
|
2025-08-06 22:11:33 +08:00
|
|
|
|
def screenshot(cls):
|
|
|
|
|
|
image_path = AiUtils.imagePathWithName("bgv") # 替换为你的图像路径
|
|
|
|
|
|
image = cv2.imread(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
# 如果图像过大,缩小显示
|
|
|
|
|
|
scale_percent = 50 # 缩小比例
|
|
|
|
|
|
width = int(image.shape[1] * scale_percent / 100)
|
|
|
|
|
|
height = int(image.shape[0] * scale_percent / 100)
|
|
|
|
|
|
dim = (width, height)
|
|
|
|
|
|
resized_image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
|
|
|
|
|
|
|
|
|
|
|
|
# 创建一个窗口并显示缩小后的图像
|
|
|
|
|
|
cv2.namedWindow("Image")
|
|
|
|
|
|
cv2.imshow("Image", resized_image)
|
|
|
|
|
|
print("请在图像上选择爱心图标区域,然后按Enter键确认。")
|
|
|
|
|
|
|
|
|
|
|
|
# 使用selectROI函数手动选择区域
|
|
|
|
|
|
roi = cv2.selectROI("Image", resized_image, showCrosshair=True, fromCenter=False)
|
|
|
|
|
|
|
|
|
|
|
|
# 将ROI坐标按原始图像尺寸放大
|
|
|
|
|
|
x, y, w, h = roi
|
|
|
|
|
|
x = int(x * image.shape[1] / resized_image.shape[1])
|
|
|
|
|
|
y = int(y * image.shape[0] / resized_image.shape[0])
|
|
|
|
|
|
w = int(w * image.shape[1] / resized_image.shape[1])
|
|
|
|
|
|
h = int(h * image.shape[0] / resized_image.shape[0])
|
|
|
|
|
|
|
|
|
|
|
|
# 根据选择的ROI提取爱心图标
|
|
|
|
|
|
if w > 0 and h > 0: # 确保选择的区域有宽度和高度
|
|
|
|
|
|
heart_icon = image[y:y + h, x:x + w]
|
|
|
|
|
|
|
|
|
|
|
|
# 转换为HSV颜色空间
|
|
|
|
|
|
hsv = cv2.cvtColor(heart_icon, cv2.COLOR_BGR2HSV)
|
|
|
|
|
|
|
|
|
|
|
|
# 定义红色的HSV范围
|
|
|
|
|
|
lower_red1 = np.array([0, 120, 70])
|
|
|
|
|
|
upper_red1 = np.array([10, 255, 255])
|
|
|
|
|
|
lower_red2 = np.array([170, 120, 70])
|
|
|
|
|
|
upper_red2 = np.array([180, 255, 255])
|
|
|
|
|
|
|
|
|
|
|
|
# 创建掩模
|
|
|
|
|
|
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
|
|
|
|
|
|
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
|
|
|
|
|
|
mask = mask1 + mask2
|
|
|
|
|
|
|
|
|
|
|
|
# 反转掩模,因为我们想要的是爱心图标,而不是背景
|
|
|
|
|
|
mask_inv = cv2.bitwise_not(mask)
|
|
|
|
|
|
|
|
|
|
|
|
# 应用掩模
|
|
|
|
|
|
heart_icon = cv2.bitwise_and(heart_icon, heart_icon, mask=mask_inv)
|
|
|
|
|
|
|
|
|
|
|
|
# 创建一个全透明的背景
|
|
|
|
|
|
height, width, channels = heart_icon.shape
|
|
|
|
|
|
roi = np.zeros((height, width, channels), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
# 将爱心图标粘贴到透明背景上
|
|
|
|
|
|
for c in range(channels):
|
|
|
|
|
|
roi[:, :, c] = np.where(mask_inv == 255, heart_icon[:, :, c], roi[:, :, c])
|
|
|
|
|
|
|
|
|
|
|
|
# 图片名称
|
|
|
|
|
|
imgName = "temp.png"
|
|
|
|
|
|
|
|
|
|
|
|
# 保存结果
|
|
|
|
|
|
cv2.imwrite(imgName, roi)
|
|
|
|
|
|
|
|
|
|
|
|
# 显示结果
|
|
|
|
|
|
cv2.imshow("Heart Icon with Transparent Background", roi)
|
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
else:
|
|
|
|
|
|
print("未选择有效区域。")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 根据名称获取图片完整地址
|
|
|
|
|
|
@classmethod
|
|
|
|
|
|
def imagePathWithName(cls, name):
|
2025-08-05 15:41:20 +08:00
|
|
|
|
current_file_path = os.path.abspath(__file__)
|
|
|
|
|
|
# 获取当前文件所在的目录(即script目录)
|
|
|
|
|
|
current_dir = os.path.dirname(current_file_path)
|
|
|
|
|
|
# 由于script目录位于项目根目录下一级,因此需要向上一级目录移动两次
|
|
|
|
|
|
project_root = os.path.abspath(os.path.join(current_dir, '..'))
|
|
|
|
|
|
# 构建资源文件的完整路径,向上两级目录,然后进入 resources 目录
|
2025-08-06 22:11:33 +08:00
|
|
|
|
resource_path = os.path.abspath(os.path.join(project_root, 'resources', name + ".png")).replace('/', '\\')
|
2025-08-05 15:41:20 +08:00
|
|
|
|
return resource_path
|
|
|
|
|
|
|
2025-08-06 22:11:33 +08:00
|
|
|
|
|
|
|
|
|
|
# AiUtils.screenshot()
|