110 lines
3.7 KiB
Python
110 lines
3.7 KiB
Python
import os
|
||
import time
|
||
import cv2
|
||
import numpy as np
|
||
from PIL import Image
|
||
|
||
|
||
# 工具类
|
||
class AiTools(object):
|
||
|
||
@classmethod
|
||
def find_image_in_image(
|
||
cls,
|
||
smallImageUrl,
|
||
bigImageUrl,
|
||
match_threshold=0.90,
|
||
consecutive_required=3,
|
||
scales=None
|
||
):
|
||
|
||
if scales is None:
|
||
scales = [0.5, 0.75, 1.0, 1.25, 1.5]
|
||
|
||
template = cv2.imread(smallImageUrl, cv2.IMREAD_COLOR)
|
||
# if template is None:
|
||
# raise Exception(f"❌ 无法读取模板 '{smallImageUrl}'")
|
||
|
||
template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
|
||
|
||
cap = cv2.imread(bigImageUrl, cv2.IMREAD_COLOR)
|
||
# if not cap.isOpened():
|
||
# print(f"❌ 无法打开视频流: {bigImageUrl}")
|
||
# return None
|
||
|
||
detected_consecutive_frames = 0
|
||
|
||
print("🚀 正在检测爱心图标...")
|
||
while True:
|
||
print("死了")
|
||
ret, frame = cap.read()
|
||
if not ret or frame is None:
|
||
time.sleep(0.01)
|
||
continue
|
||
print("哈哈哈")
|
||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||
|
||
current_frame_has_match = False
|
||
best_match_val = 0
|
||
best_match_loc = None
|
||
best_match_w_h = None
|
||
print("aaaaaaaaaaaa")
|
||
for scale in scales:
|
||
resized_template = cv2.resize(template_gray, (0, 0), fx=scale, fy=scale)
|
||
th, tw = resized_template.shape[:2]
|
||
|
||
if th > frame_gray.shape[0] or tw > frame_gray.shape[1]:
|
||
continue
|
||
|
||
result = cv2.matchTemplate(frame_gray, resized_template, cv2.TM_CCOEFF_NORMED)
|
||
_, max_val, _, max_loc = cv2.minMaxLoc(result)
|
||
|
||
if max_val > best_match_val:
|
||
best_match_val = max_val
|
||
best_match_loc = max_loc
|
||
best_match_w_h = (tw, th)
|
||
if max_val >= match_threshold:
|
||
current_frame_has_match = True
|
||
print("break 了")
|
||
break
|
||
print("bbbbbbbbbbbbbbbbbbbbbb")
|
||
if current_frame_has_match:
|
||
print("111111")
|
||
detected_consecutive_frames += 1
|
||
last_detection_info = (best_match_loc, best_match_w_h, best_match_val)
|
||
else:
|
||
print("2222222")
|
||
detected_consecutive_frames = 0
|
||
last_detection_info = None
|
||
|
||
if detected_consecutive_frames >= consecutive_required and last_detection_info:
|
||
print("333333333")
|
||
top_left, (w, h), match_val = last_detection_info
|
||
center_x = top_left[0] + w // 2
|
||
center_y = top_left[1] + h // 2
|
||
|
||
print(f"🎯 成功识别爱心图标: 中心坐标=({center_x}, {center_y}), 匹配度={match_val:.4f}")
|
||
return center_y, center_y
|
||
else:
|
||
return -1, -1
|
||
cap.release()
|
||
print("释放了")
|
||
return -1, -1
|
||
|
||
|
||
|
||
@classmethod
|
||
def imagePath(cls, name):
|
||
current_file_path = os.path.abspath(__file__)
|
||
# 获取当前文件所在的目录(即script目录)
|
||
current_dir = os.path.dirname(current_file_path)
|
||
# 由于script目录位于项目根目录下一级,因此需要向上一级目录移动两次
|
||
project_root = os.path.abspath(os.path.join(current_dir, '..'))
|
||
# 构建资源文件的完整路径,向上两级目录,然后进入 resources 目录
|
||
resource_path = os.path.abspath(os.path.join(project_root, 'resources', name + ".png")).replace('/', '\\\\')
|
||
return resource_path
|
||
|
||
|
||
|
||
|